41 research outputs found

    DORT Method and Selective Focusing of UWB Electromagnetic Waves

    Get PDF
    This work presents results from the research conducted on time reversal (TR) phenomenon for Ultra Wide Band (UWB) electromagnetic waves. The first part of this work gives an overview on the numerical techniques used in our simulations. Then second part is devoted to the description of standard time reversal process including simulations that shows the process’s properties. This is followed by a description and implementation of the time-reversal operator decomposition (DORT) method. An investigation of DORT is provided along with analysis and comparison against the standard TR method. Advisor: Prof Fernando L. Teixeir

    Cooperative Control of Multi-Master-Slave Islanded Microgrid with Power Quality Enhancement Based on Conservative Power Theory

    Get PDF
    Made available in DSpace on 2018-11-26T16:04:54Z (GMT). No. of bitstreams: 0 Previous issue date: 2018-07-01Cooperative control of power converters in a microgrid offers power quality enhancement at sensitive load buses. Such cooperation is particularly important in the presence of reactive, nonlinear, and unbalanced loads. In this paper, a multi-master-slave-based control of distributed generators interface converters in a three-phase four-wire islanded microgrid using the conservative power theory (CPT) is proposed. Inverters located in close proximity operate as a group in master- salve mode. Slaves inject the available energy and compensate selectively unwanted current components of local loads with the secondary effect of having enhanced voltage waveforms while masters share the remaining load power autonomously with distant groups using frequency droop. The close proximity makes it practical for control signals to be communicated between inverters in one group with the potential to provide rapid load sharing response for mitigation of undesirable current components. Since each primary source has its own constraints, a supervisory control is considered for each group to determine convenient sharing factors. The CPT decompositions provide decoupled current and power references in abc-frame, resulting in a selective control strategy able to share each current component with desired percentage among the microgrid inverters. Simulation results are presented to demonstrate the effectiveness of the proposed method.Colorado Sch Mines, Dept EECS, Golden, CO 80401 USAAalborg Univ, Dept Energy Technol, DK-9220 Aalborg, DenmarkPetr Inst, Dept Elect Engn, Abu Dhabi 2533, U Arab Emirate

    Robust nonlinear generalised predictive control for a class of uncertain nonlinear systems via an integral sliding mode approach

    Get PDF
    In this paper, a robust nonlinear generalised predictive control (GPC) method is proposed by combining an integral sliding mode approach. The composite controller can guarantee zero steady-state error for a class of uncertain nonlinear systems in the presence of both matched and unmatched disturbances. Indeed, it is well known that the traditional GPC based on Taylor series expansion cannot completely reject unknown disturbance and achieve offset-free tracking performance. To deal with this problem, the existing approaches are enhanced by avoiding the use of the disturbance observer and modifying the gain function of the nonlinear integral sliding surface. This modified strategy appears to be more capable of achieving both the disturbance rejection and the nominal prescribed specifications for matched disturbance. Simulation results demonstrate the effectiveness of the proposed approach

    Application of Particle Swarm Optimization (PSO) algorithm for Black Powder (BP) source identification in gas pipeline network based on 1-D model

    Get PDF
    Black Powder (BP) is a worldwide challenge that spans all stages of the natural gas industry from the producing wells to the consuming points. It can endanger the pipeline operations, damage instruments and contaminate customer supplies. The formation of BP inside natural gas pipeline mainly results from the corrosion of internal walls of the pipeline, which is a complex chemical reaction. This work aims to develop a novel algorithm for BP source identification within gas pipelines network based on a 1-D model of BP transport and deposition. The optimization algorithm for BP source identification is developed based on the well-known Particle Swarm Optimization (PSO) algorithm, which can solve constrained optimization problems. By applying this optimization algorithm on the gas transmission pipeline network, the BP source at different junctions could be identified and quantified simultaneously. Extensive simulation studies are conducted to validate the effectivity of the optimization algorithm

    Stability enhancement of a hybrid micro-grid system in grid fault condition

    Get PDF
    Low voltage ride through capability augmentation of a hybrid micro-grid system is presented in this paper which reflects enhanced reliability in the system. The control scheme involves parallel connected multiple ac-dc bidirectional converters. When the micro-grid system is subjected to a severe voltage dip by any transient fault single power converter may not be able to provide necessary reactive power to overcome the severe voltage dip. This paper discusses the control strategy of additional power converter connected in parallel with main converter to support extra reactive power to withstand the severe voltage dip. During transient fault, when the terminal voltage crosses 90% of its pre-fault value, additional converter comes into operation. With the help of additional power converter, the micro-grid system withstands the severe voltage fulfilling the grid code requirements. This multiple converter scheme provides the micro-grid system the capability of low voltage ride through which makes the system more reliable and stable.peer-reviewe

    Design optimization of ironless multi-stage axial-flux permanent magnet generators for offshore wind turbines

    Get PDF
    Direct-driven ironless-stator machines have been reported to have low requirements on the strength of the supporting structures. This feature is attractive for offshore wind turbines, where lightweight generators are preferred. However, to produce sufficient torque, ironless generators are normally designed with large diameters, which can be a challenge to the machine’s structural reliability. The ironless multi-stage axial-flux permanent magnet generator (MS-AFPMG) has the advantages of ironless machines but a relatively small diameter. The objective of this article is to present the design optimization and performance investigation of the ironless MS-AFPMG. An existing design strategy, which employs two- and three-dimensional static finite element analyses and genetic algorithm for machine optimization, is improved with the aim of reducing the calculation load and calculation time. This improved design strategy is used to investigate the optimal ironless MS-AFPMG. Some intrinsic features of this kind of machine are revealed

    Small signal stability analysis of doubly fed induction generator including SDBR

    Get PDF
    This paper presents small signal stability analysis of a doubly fed induction generator (DFIG) based wind farm including series dynamic braking resistor (SDBR) connected at the stator side. A detailed mathematical model of wind turbine, DFIG machine and converters and SDBR is presented in this paper to derive the complete dynamic equations of the studied system. Small signal stability of this system is carried out by modal and sensitivity analysis, participation factors and eigenvalue analysis. Finally, this paper presents an analysis of the dynamic behavior of DFIG based wind farm under voltage dip condition with and without SDBR.peer-reviewe
    corecore